<font color=red>笔趣阁</font>已启用最新域名:www.<font color=red>biquge001</font>.com ,请大家牢记最新域名并相互转告,谢谢!
如今的不再拥有进取心的温莎大帝没事就跟科学家们混在一起,这是让他感觉最舒适的朋友圈。
http://www.kmwx.net/Book/0/1/
这一天,他跟四个老朋友一起参观北京大学的一个制药实验中心。他们是:达尔文、李比希、巴斯德和孟德尔,分别来自英、德、法、奥地利,直是个纯国际组合。
除了李比希之外,另外三个科学家如今都是北京大学的教授。而这个制药实验中心则是当今世界最先进的全自动化实验系统。一个实验中心要想得到世界最先进这个头衔,当然不可能是凭空而来的。
它的研究基础来自温莎医院这些年来收集的三百多万种化合物,光是这些费尽心机收集、分类的化合物就当得上价值连城的美誉。
制药的过程往往从这些海量的化合物开始,研究小组先确定要达到的目标,然后制定实验方案。比如要对心血管组织起作用,研究小组就得搭建一组化学反应平台,在海量的化合物中进行实验,一层层地筛选药物。
整个过程都是自动化的,但是经费有限,不可能每一次都把所有的化合物试一遍,得根据一定的经验挑选某个分类、某种属性,除非是重点项目才允许不受限制的使用所有的化合物。
一个项目的实验要涉及化合物的复制,实验品的购买,平台的搭建,自动识别参数和体系的搭建,进一步有动物实验和临床实验。药物副作用产生的医学事故还涉及到赔偿。一种新药出炉,非得耗费几百万欧元不可。
类似的实验中心,几乎在联合国每一个重要的国家都有一个,有些是跟公司合作,在北京这种没有什么科学底蕴的城市则直接放在了大学校园里。
巴斯德问老板:“最近有没有什么新药发明?”
唐老板:“有啊,有一个比较有趣的药物。哌甲脂,能够治疗注意力不足过动症,副作用还可以接受。其实,每个人都或多或少有一点注意力不足的症状。除非是传说中的修成了佛的禅宗大师,他们的传说境界有可能达到完全不被外物所扰。
还有一种情况就是服用特定的麻醉药品了。以哌甲脂这样的副作用来看,大有机会成为被经常使用的使注意力集中的药物。普通人和天才的一大区别就是注意力能否集中。
你想,一个普通人智商100,另一个天才智商150,学习一个概念,天才只需要一个小时,而普通人理论上学习一个半小时总够了吧?那你得比天才多把注意力约束半个小时。
而很可能天才才能把注意力持续约束一个小时,普通人20分钟就歇菜了。一来二去,普通人跟天才之间的差距就越来越大了。
我现在还行,但没准儿哪天我也得需要哌甲脂才能集中注意力,那时一定是真的老了,各位现在的情况怎么样啊?”
在场的四大名家就属李比希年纪最大,今年已经71岁了,他果然表示最近注意力大不如前,如果有什么重要的会议的话,搞不好可以试试哌甲脂的药效。
巴斯德说:“这个对于外科手术的医生很有用啊,大型的手术动不动就6、7个小时中间不带休息的,如果用这种药岂不是能解决很多问题?”
孟德尔:“打仗的时候也可以用。”他是众多科学家中名气最不响的,但不知道为什么唐老板也把他当成了老朋友。唐老板刚刚才决定进入半退隐阶段,对打仗自然没有了兴趣,闻言只是微笑,看得孟德尔讪讪地一笑。
达尔文说:“这个学生考试的时候用得上,但我想副作用也不小吧?还是少用为妙。”
唐宁:“是啊,能不用就不用,医生如此碰到特殊手术是可以用一用,别人就算了。我们人类有一种很基本的‘动机调节’机制,据比较可靠的估计,哌甲脂的药效跟这种机制有关。
在神经系统的一个单元中,传入神经持有多巴胺,当某一活动有益时,一定量的多巴胺纷纷向传出神经释放多巴胺,让人产生愉悦、快乐的情绪,使人专注于做某件事。
与此相反的过程就是多巴胺的回收,此时通过一种叫多巴胺运转体的物质,哌甲脂就是抵制了多巴胺胺运转体的动作,使人长时间地沉浸在某一活动中。
这么一看,确实不能滥用,这个最基本的机制被长期扰乱之后,可能产生药物依赖。作外科医生也真是辛苦啊。”
其实唐老板已经为医生们进行了大量的自动机器的研发,这种机器可没有那么简单,最先要解决的是精准三维图像生产技术。
众所周知,x光射线是可以产生人体内部影像的一种可用于诊断的好东西。最简单的生产x光的办法是使用加速过电子来撞击金属板,电子在失去动能的过程中以x光的方式损失能量。
像天津的那个强大的加速器所产生的x光能量之光谱能够与伽马射线重叠,称为硬x光,弱点的x光称为软x光射线。
大多数人都见过x光对骨骼的平面成像,但它也可以用计算机将多个扫描图片合成三维图像,为诊断提供更精确的依据。专业术语叫作“x射线断层扫描成像”,简称ct。
自从x光诞生之日起,温莎医院就用它来对多种疾病进行诊断,同时也在加紧ct的研发,目前,温莎医院与ibm、通用电气一起研发的的ct机器已经能够对生物体进行360度的高速扫描成像。
经过软件修饰过的三维影像非常的精致,就像一个仙人拥有一双神眼般能够看穿人体,并且比最有想象力的神话更清晰地展现生命体的奥秘。
x射线能够产生电离辐射,如果使用的剂量太大的话,会对人体造成伤害,所以团队为成像系统做了很多的工作,采用的减弱剂量的办法有多种。其一,尽量只针对某一器官做扫描;其二,在某一时间内不能超过某个剂量,以使人的身体得以恢复。
其三,尽量针对病症只释放某些波段的扫描,如果需要进一步的确诊,再使用更多的波段,两次波段可以做到不重复,所得的数据却可以综合起来。
x射线技术在《自然》公布之后,苏格兰皇家医院心急火燎地开设放射科,不太注重患者的放射安全,曾经被温莎医院批评过。
所有的这些都无法跟另一种技术相提并论——核磁共振成像技术。它利用的是自旋非零的核子能够与入射电磁波的某些频谱发生共振,从而释放出电磁信号的原理。
人体有70%是水,而组成水的氢恰恰是释放信号强烈的一种,不同的人体组织所含的水份不一样,通过计算机分析电磁信号的特征,可以得到人体各组织精确的核子位置的信息。
得到的三维信息可以达到微米级,跟光学显微镜差不多。如果愿意,还能给这些三维信息上彩,得到让普通人一看就明白的、叹为观止的人体内部照片。
在诊断疾病方面,以水为核心的核磁共振成像还有一个意外的好处,大部分的疾病病灶处的水成分都会发生变化,能使诊断变得容易。
由于核磁共振技术需要的能量是生产巨大的磁力,所以按照精密程度可把仪器分成三个等级。第一等是稀土材料永磁体,入门级,廉价;第二等是稀土材料常温超导,中等;第三等是低温超导材料,昂贵,超强。
对于常见的病症,使用入门级即可。它没有产生对人体有害的辐射能量,理论上可以不对病人扫描的次数做限制,当然,成本也是一种限制,这种高科技设备的资源也是有限的,费用也是昂贵的。
目前,全球最先进的ct与mri全部都在温莎医院,距离最近的竞争对手是**迪生电气的x光射线成像技术,平面的。由于从平面到三维的数据处理需要的计算能力对**迪生电气来说是天文数字,所以这个行业老二根本没有机会。
mri就更不用说,温莎医院独家技术,别人根本就造不出那么强大的磁场,也无法实验三维成像与计算。要不是唐老板说起,在场的几大科学家也不知道居然还有这么强大的设备呢。
而如今一骑绝尘的温莎医院还要挺进机器辅助外科手术领域,以减少医生的工作量。有了人体三维成像技术,机器手术也就有了基础。机器手术最初要完成的任务就是代替医生进行麻醉、切开、摘取、切断、切除、缝合、输血等繁多、繁重的外科任务。
机器动刀有一个很大的优势,就是可以完美地使用激光手术刀。因为它可以计算出仅切断目标所需的能量多少,这是激光刀跟普通手术刀的一大区别,人肉是很难对动刀的深度进行控制的。
激光手术刀的动刀速度极快,要是比武的话,优秀外科医生的速度为1的话,同样的切割动作,激光刀的速度有可能是10,甚至100。可以大大地降低手术的时间。
激光刀还可以通过光纤来传导,意味着微创手术能实现,切割可以通过一个小小的光纤创口进行,比中医的金针大不了多少,说不定连出血都不会发生,输血都免了,对病人进行24小时的手术都可以。
唐老板一个又一个地向大伙儿介绍最新的医学研究项目,还有一些是可以方便地参观的。
微创切下来的多余组织怎么办?不可能再切开来拿出来,所以真正的微创手术还得再伸出一个容器,把多余的组织在容器里用激光刀切碎后取出。经过精心设计的容器与液体泵接合,能够一逐步把大的器官都移出体外。
像之前阿尔伯特亲王那种手术在不久将来可以用微创技术来实施,则不用动大刀,只需在胃部开一个0。5厘米直径的小孔,整个胃都可以通过小孔摘出来。